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Event-triggered bipartite consensus of single-integrator multi-agent systems is investigated in the presence of measurement noise.
A time-varying gain function is proposed in the event-triggered bipartite consensus protocol to reduce the negative effects of the
noise corrupted information processed by the agents. Using the state transition matrix, Itô formula, and the algebraic graph theory,
necessary and sufficient conditions are given for the proposed protocol to yield mean square bipartite consensus. We find that
the weakest communication requirement to ensure the mean square bipartite consensus under event-triggered protocol is that the
signed digraph is structurally balanced and contains a spanning tree. Numerical examples validated the theoretical findings where
the system shows no Zeno behavior.

1. Introduction

Recent years have witnessed the great achievements in
studying the consensus problem of multi-agent systems
(MASs) which has broad applications in various fields [1–
8]. We notice that in these mentioned works interactions
among agents are all assumed to be cooperative to achieve
consensus. However, it is very natural to see, in many
real examples, that in MASs some agents cooperate while
others compete, and MASs with competitive interactions
can introduce more complex behaviors. To quantitatively
model such a scenario, the concept of bipartite consensus,
i.e., agents agree on a certain quantity with the equal mod-
ulus but different signs, has been proposed [9], and many
achievements have been made [9–18]. In [9], for single-
integrator MASs, a linear feedback protocol is designed and
under the assumption that the communication topology
G is strongly connected, the MAS is proved to achieve
bipartite consensus if and only if G is structurally bal-
anced. Then, in [10], the communication condition in [9]
is relaxed to containing a spanning tree. In [11], the com-
munication topology in [9] is extended to the time-varying
case.

It is worth noting that the above literatures mainly focus
on continuous feedback protocols, where the agent state is
monitored continuously and its controller is updated all the
time. However, updating the controller in real-time easily
increases the computational burden. Therefore, reducing
the update frequency for a trade-off between the system
performance and the resource usage is usually desired. This
requirement then naturally brings event-triggered schemes
into consideration, which updates only at some predeter-
mined discrete time instants. Event-triggered techniques
have already been widely used in traditional consensus
problems of MASs [19–27]. For example, a self-triggered
protocol is proposed in [19] and a decentralized event-
triggered protocol ensuring average consensus is proposed in
[20] for single-integrator MASs, time-dependent triggering
functions are investigated in [24] for second-orderMASs, and
event-triggered consensus problems are considered in [25,
26] for general linear systems, just name a few. Despite these
achievements, event-triggered protocols have not been well
studied for bipartite consensus [28, 29], which thusmotivates
the present study.

In another parallel line, measurement noise is
unavoidable in practice, making the investigation on
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the event-triggered bipartite consensus of MASs with noise
even interesting. In fact, studies on bipartite consensus with
measurement noise can be found in [13, 16–18], which are
however all with time-triggered controllers. Event-triggered
bipartite consensus for MASs with measurement noise still
remains to tackle.

In this paper, we investigate event-triggered bipartite
consensus for single-integrator MASs with measurement
noise. A time-varying control gain is introduced into the
event-triggered protocols, leading to a time-varying closed-
loop system. With the help of the state transition matrix and
stochastic analysis theory, the closed-loop system is analyzed.
Necessary and sufficient conditions for the system to achieve
mean square bipartite consensus based on event-triggered
protocols are given. We find that the communication topol-
ogy being structurally balanced and containing a spanning
tree are necessary and sufficient for ensuring a mean square
bipartite consensus based on event-triggered protocols.

Organization. Section 2 gives the algebraic graph preliminar-
ies and the problem in question. Section 3 contains the main
results of the paper. Section 4 applies the results to examples
of MASs with six agents. Section 5 closes this paper.

Notations.𝑅𝑛×𝑚 represents the real matrix of 𝑛 × 𝑚 order. 0
denotes vector or matrix whose elements are 0. 1𝑛 represents
column vector whose elements are 1. sgn(⋅) represents the
sign function. ⊗ represents Kronecker product. For a given
matrix or vector 𝑋, 𝑋𝑇, and ‖𝑋‖ represent the transpose
and European norm of 𝑋, respectively. ‖𝑋‖𝐹, ‖𝑋‖1, and‖𝑋‖∞ represent the Frobenius norm, 1-norm, and ∞-norm,
respectively. Re(𝜆) is the real part of 𝜆.
2. Problem Statement

The communication relations among 𝑁 agents are described
by the signed digraph G = (V,E,A), whereV = {1, . . . , 𝑁}
and E ⊆ V × V represent the node set and the edge set,
respectively. A = (𝑎𝑖𝑗) ∈ 𝑅𝑁×𝑁, where 𝑎𝑖𝑗 > 0 and 𝑎𝑖𝑗 < 0
represent cooperation and competition between agents 𝑖 and𝑗, respectively. 𝑎𝑖𝑗 ̸= 0 ⇐⇒ (𝑗, 𝑖) ∈ E. We assume that 𝑎𝑖𝑖 = 0
and 𝑎𝑖𝑗𝑎𝑗𝑖 ≥ 0, ∀𝑖, 𝑗 ∈ V.L = C𝑟 −A is the Laplacian matrix
of G, where C𝑟 = diag(∑𝑁

𝑗=1 |𝑎1𝑗|, . . . , ∑𝑁
𝑗=1 |𝑎𝑁𝑗|). A signed

digraphG = (V,E,A) is said structurally balanced ifV can
be divided into two subsetsV1,V2,V1∪V2 = V,V1∩V2 =⌀, such that 𝑎𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ V𝑝 (𝑝 ∈ {1, 2}), and 𝑎𝑖𝑗 ≤ 0,∀𝑖 ∈ V𝑝, 𝑗 ∈ V𝑞 (𝑝 ̸= 𝑞, 𝑝, 𝑞 ∈ {1, 2}). It is said structurally
unbalanced otherwise.

Lemma 1 (see [12]). If G is structurally balanced, Laplacian
L of G has at least one zero eigenvalue and all of the nonzero
eigenvalues have positive real parts. Furthermore, L has only
one zero eigenvalue if and only ifG has a spanning tree.

Consider a MAS described by�̇�𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑁, (1)
where 𝑥𝑖(𝑡) ∈ 𝑅𝑛 is the state of the 𝑖th agent and 𝑢𝑖(𝑡) ∈ 𝑅𝑛 is
the control input. A signed digraphG = (V,E,A) is used to
describe interactions among the 𝑁 agents.

Since communication is often disturbed by measurement
noise, we assume the 𝑖th agent receives information from
its neighbors with measurement noise 𝑥𝑗(𝑡) + 𝜑𝑗𝑖(𝑡), 𝑗 ∈
N𝑖, 𝑖 = 1, . . . , 𝑁. In order to reduce the frequency of
controller updates, we design the following event-triggered
protocol for the 𝑖th agent:

𝑢𝑖 (𝑡) = 𝑏 (𝑡) [[
𝑁∑
𝑗=1

𝑎𝑖𝑗 (sgn (𝑎𝑖𝑗) 𝑥𝑗 (𝑡𝑘) − 𝑥𝑖 (𝑡𝑘))
+ 𝑁∑
𝑗=1

𝑎𝑖𝑗𝜑𝑗𝑖 (𝑡)]] , ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , (2)

where 𝑖 = 1, . . . , 𝑁, 𝑘 = 0, 1, . . . , 𝑏(𝑡) > 0 is a piecewise
continuous function. {𝜑𝑗𝑖(𝑡)} is 𝑛 dimensional independent
standard white noise.

Remark 2. As far as we know the existing results [28, 29]
for event-triggered bipartite consensus did not consider
measurement noise. Here, we take noise into consideration.
If we take 𝑏(𝑡) ≡ 1, then (2) is reduced to the protocols in
[28, 29] without measurement noise.

Let 𝑋(𝑡) = (𝑥𝑇1 (𝑡), . . . , 𝑥𝑇𝑁(𝑡))𝑇 and 𝐽 = diag(𝜍𝑇1 (𝑡), . . . ,𝜍𝑇𝑁(𝑡))𝑇 be𝑁×𝑁2 dimensional block diagonal matrix, where𝜍𝑇𝑖 (𝑡) = (𝑎𝑖1, . . . , 𝑎𝑖𝑁) is the 𝑖th row element of matrixA.Then
the closed-loop system is

d𝑋 (𝑡) = −𝑏 (𝑡) (L ⊗ 𝐼𝑛)𝑋 (𝑡𝑘) d𝑡+ 𝑏 (𝑡) (𝐽 ⊗ 𝐼𝑛) dΛ (𝑡) ,𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , 𝑘 = 0, 1, ⋅ ⋅ ⋅ (3)

where Λ(𝑡) = (Λ𝑇
1(𝑡), . . . , Λ𝑇

𝑁(𝑡))𝑇 and Λ 𝑖(𝑡) = (Λ𝑇
1𝑖(𝑡), . . . ,Λ𝑇

𝑁𝑖(𝑡))𝑇, 𝑖 = 1, . . . , 𝑁. For 𝑖, 𝑗 = 1, . . . , 𝑁, ∫𝑡0 𝜑𝑗𝑖(𝑠)𝑑𝑠 =Λ 𝑗𝑖(𝑡) is 𝑛 dimensional standard Brownianmotion. Let 𝑒(𝑡) =(𝑒1(𝑡), . . . , 𝑒𝑁(𝑡))𝑇 be the measurement error, where 𝑒𝑖(𝑡) =𝑥𝑖(𝑡𝑘) − 𝑥𝑖(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 0, 1, ⋅ ⋅ ⋅ . Then (3) is changed
to

d𝑋 (𝑡) = −𝑏 (𝑡) (L ⊗ 𝐼𝑛) (𝑋 (𝑡) + 𝑒 (𝑡)) d𝑡+ 𝑏 (𝑡) (𝐽 ⊗ 𝐼𝑛) dΛ (𝑡) ,𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , 𝑘 = 0, 1, ⋅ ⋅ ⋅ (4)

We present the following definition of event-triggered bipar-
tite consensus for the stochastic system.

Definition 3. Let U = {𝑢𝑖, 𝑖 = 1, . . . , 𝑁} be an event-
triggered protocol. If for any given 𝑋(0) ∈ 𝑅𝑛𝑁, there exist𝑔 = (𝑔1, . . . , 𝑔𝑁)𝑇 ∈ 𝑅𝑁, 𝑔𝑖 ∈ {±1}, 𝑖 = 1, . . . , 𝑁 and 𝑛
dimensional random vector ]∗,

lim
𝑡→∞

𝐸 𝑋 (𝑡) − 𝑔 ⊗ ]∗2 = 0, (5)

where 𝐸‖]∗‖2 < ∞, 𝐸]∗ is dependent on communication
relations among agents and 𝑋(0), which is deterministic.
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Then, event-triggered protocol U is called a mean square
bipartite consensus protocol.

We introduce the event-triggered condition‖𝑒 (𝑡)‖ ≤ 𝑐1𝑒−𝛼𝑡, (6)

where 𝑐1 > 0, 0 < 𝛼 < min𝜆(L) ̸=0{Re(𝜆(L))}. When the
measurement error ‖𝑒(𝑡)‖ is over the threshold, the controller
is triggered and updates itself.

To analyze the closed-loop system in (4), we make the
following assumptions:(Q1) G = (V,E,A) is structurally balanced.(Q2) G = (V,E,A) contains a spanning tree.(Q3) ∫∞0 𝑏(𝑠)d𝑠 = ∞.(Q4) ∫∞0 𝑏2(𝑠)d𝑠 < ∞.

The following lemma plays an important role in the
following section.

Lemma 4 (see [16]). Given linear time-varying system𝑑𝑌𝑙𝑑𝑡 = −𝑏 (𝑡) 𝐹𝜆
𝑙 𝑌𝑙, 𝑙 ∈ N, 𝜆 ∈ C, 𝑡 ≥ 𝑡0 ≥ 0, (7)

where 𝑌𝑙 = (𝑦𝑙1, . . . , 𝑦𝑙𝑅𝑙)𝑇 ∈ 𝑅𝑅𝑙 and 𝐹𝜆
𝑙 is the 𝑅𝑙 × 𝑅𝑙 dimen-

sional Jordan block, which 𝜆 is the diagonal element. Then the
state transition matrix of (7) is Ψ𝐹𝜆

𝑙
(𝑡, 𝑡0) = 𝑒−∫𝑡𝑡0 𝑏(𝑠)𝑑𝑠𝐹𝜆𝑙 . In

addition, we can obtain lim𝑡→∞Ψ𝐹𝜆
𝑙
(𝑡, 𝑡0) = 0 if ∫∞0 𝑏(𝑠)𝑑𝑠 =∞ and Re(𝜆) > 0.

Lemma 5. If the event-triggered protocol (2) is a mean square
bipartite consensus protocol, then ∃𝑔 = (𝑔1, . . . , 𝑔𝑁)𝑇 ∈ 𝑅𝑁,𝑔𝑖 ∈ {±1}, 𝑖 = 1, . . . , 𝑁, and 𝜃 = (𝜃1, . . . , 𝜃𝑁)𝑇 ∈ 𝑅𝑁, such that
lim𝑡→∞Ψ(𝑡, 0) = 𝑔𝜃𝑇⊗𝐼𝑛, whereΨ(𝑡, 0) is the state transition
matrix of (4).

Proof. From the above condition, Definition 3 implies that
for any given initial state 𝑋(0), there exist a vector 𝑔 and a
random vector ]∗ so that lim𝑡→∞𝐸‖𝑋(𝑡) − 𝑔 ⊗ ]∗‖2 = 0.
Obviously,𝑋 (𝑡) = Ψ (𝑡, 0)𝑋 (0)

− ∫𝑡

0
𝑏 (𝑠) Ψ (𝑡, 𝑠) (L ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠

+ ∫𝑡

0
𝑏 (𝑠) Ψ (𝑡, 𝑠) (𝐽 ⊗ 𝐼𝑛) dΛ (𝑠) .

(8)

Without loss of generality, we assume ∫𝑡0 𝑏(𝑠)Ψ(𝑡, 𝑠)(L ⊗𝐼𝑛)𝑒(𝑠)d𝑠 and ∫𝑡0 𝑏(𝑠)Ψ(𝑡, 𝑠)(𝐽 ⊗ 𝐼𝑛)dΛ(𝑠) converge to 𝑌∗ and𝑍∗ in mean square sense, respectively. Then,𝑔 ⊗ 𝐸]∗ = lim
𝑡→∞

𝐸𝑋 (𝑡)
= (Ψ∞ ⊗ 𝐼𝑛)𝑋 (0) − 𝐸𝑌∗ + 𝐸𝑍∗, (9)

where lim𝑡→∞Ψ(𝑡, 0) = Ψ∞ ⊗ 𝐼𝑛. According to Definition 3
and the arbitrariness of 𝑋(0), one obtains (Ψ∞ ⊗ 𝐼𝑛)𝑋(0) =𝑔 ⊗ 𝐸𝑑∗, where 𝐸𝑑∗ ∈ 𝑅𝑁.

Let Ψ∞ = (1, . . . , 𝑁). Then, all elements of 𝑖 have
the same absolute value. The same applies for ∑𝑁

𝑗=1(𝑗 ⊗ 𝜏𝑗),
where 𝜏𝑗 ∈ 𝑅𝑛, 𝑗 = 1, . . . , 𝑁. If Ψ∞ = 0, then by making𝜃 = 0, Lemma 5 holds. IfΨ∞ has at least one nonzero column,
without loss of generality, we assume 1 ̸= 0. Then 1 =𝜃1𝑔. Without loss of generality, we assume 𝜃1 > 0. For any𝛼, 𝛽 ∈ 𝑅𝑛, 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ̸= 0, 𝑎𝛼 + 𝑏𝛽 ̸= ±(𝑎𝛼 − 𝑏𝛽). If𝑗 ̸= 0 for some 𝑗 ̸= 1, then all 𝑛 dimensional components
of 𝑗 ⊗ 𝛼 − 1 ⊗ 𝛽 have the same modulus if and only if𝑗 = 𝜃𝑗𝑔, 𝜃𝑗 > 0. If 𝑗 = 0, we have 𝑗 = 𝜃𝑗𝑔 by taking 𝜃𝑗 = 0.
Then Ψ∞ = (1, . . . , 𝑁) = (𝜃1𝑔, . . . , 𝜃𝑁𝑔) = 𝑔(𝜃1, . . . , 𝜃𝑛).
In addition, lim𝑡→∞Ψ(𝑡, 0) = Ψ∞ ⊗ 𝐼𝑁, so lim𝑡→∞Ψ(𝑡, 0) =𝑔(𝜃1, 𝜃2, . . . , 𝜃𝑁) ⊗ 𝐼𝑛 = 𝑔𝜃𝑇 ⊗ 𝐼𝑛.
Lemma 6. If (Q1) − (Q4) hold, then for any given initial state𝑋(0), there is a random vector 𝑋∗ such that 𝑋(𝑡) converges to𝑋∗ in mean square sense, i.e., lim𝑡→∞𝐸‖𝑋(𝑡) − 𝑋∗‖2 = 0.
Proof. If (Q1) and (Q2) hold, then Laplacian L has exactly
one zero eigenvalue and all nonzero eigenvalues have positive
real parts by Lemma 1. Thus, there exists an invertible matrix𝐷, such that 𝐷−1

L𝐷 = 𝐹 = diag (0, 𝐹2, . . . , 𝐹𝛾) , (10)

where𝐹𝑖 (𝑖 = 2, . . . , 𝛾) is the𝑅𝑖×𝑅𝑖 dimensional Jordan block,
which 𝜆𝑖 is the diagonal element, and 𝑅2 + ⋅ ⋅ ⋅ + 𝑅𝛾 = 𝑁 −1. Obviously, 𝜆2, . . . , 𝜆𝛾 are eigenvalues of L and Re(𝜆𝑖) >0, 𝑖 = 2, . . . , 𝛾.

Since Ψ(𝑡, 𝑡0) (𝑡0 ≥ 0) is the state transition matrix of (4),Ψ(𝑡, 𝑡0) = 𝑒−∫𝑡𝑡0 𝑏(𝑠)d𝑠L ⊗ 𝐼𝑛. From Lemma 4,Ψ (𝑡, 𝑡0) = (𝐷 ⊗ 𝐼𝑛)⋅ diag (𝐼𝑛, Ψ𝐹𝜆22
(𝑡, 𝑡0) ⊗ 𝐼𝑛, . . . , Ψ𝐹

𝜆𝛾
𝛾

(𝑡, 𝑡0) ⊗ 𝐼𝑛)
⋅ (𝐷−1 ⊗ 𝐼𝑛) .

(11)

Combining this with (Q3), one has
lim
𝑡→∞

Ψ (𝑡, 𝑡0) = [𝐷 diag (1, 0, 0, . . . , 0)𝐷−1] ⊗ 𝐼𝑛. (12)

Thus, there exists 𝑇 > 0 so that for any 𝑡 ≥ 𝑡0 > 0,
max (Ψ (𝑡, 𝑡0)1 , Ψ (𝑡, 𝑡0)∞) ≤ 𝑇 < ∞. (13)

By Itô formula, the solution of (4) is given by𝑋 (𝑡) = Ψ (𝑡, 0)𝑋 (0)
− ∫𝑡

0
𝑏 (𝑠) Ψ (𝑡, 𝑠) (L ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠

+ ∫𝑡

0
𝑏 (𝑠) Ψ (𝑡, 𝑠) (𝐽 ⊗ 𝐼𝑛) dΛ (𝑠) .

(14)
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By (Q4), one obtains that, ∀𝜀 > 0, ∃Γ0 > 0, ∫∞Γ0 𝑏2(𝑠)d𝑠 <𝜀. By (12), ∃Γ1 > Γ0, such that max(‖Ψ(𝑡2, 𝑡3) − Ψ(𝑡1, 𝑡3)‖1,‖Ψ(𝑡2, 𝑡3) − Ψ(𝑡1, 𝑡3)‖∞) < 𝜀, 𝑡2 ≥ 𝑡1 > Γ1, ∀𝑡3 ∈ [0, Γ0].
Let 𝑋2(𝑡) = ∫𝑡0 𝑏(𝑠)Ψ(𝑡, 𝑠)(L ⊗ 𝐼𝑛)𝑒(𝑠)d𝑠, then by (10) and

(11), one has

𝑋2 (𝑡) = ∫𝑡

0
𝑏 (𝑠) (𝐷 ⊗ 𝐼𝑛)

⋅ diag (𝐼𝑛, Ψ𝐹𝜆22
(𝑡, 𝑠) ⊗ 𝐼𝑛, . . . , Ψ𝐹

𝜆𝛾
𝛾

(𝑡, 𝑠) ⊗ 𝐼𝑛)
⋅ (𝐷−1

L ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠.
(15)

By (6), (10), and direct calculation, one has (𝐷−1L⊗𝐼𝑛)𝑒(𝑠) =(0,D𝑇
2 (𝑠), . . . ,D𝑇

𝑁(𝑠))𝑇, where D𝑖(𝑠) (𝑖 = 2, . . . , 𝑁) is the
linear combination of 𝑒1(𝑠), . . . , 𝑒𝑁(𝑠). By L’Hospital and
direct calculation, one obtains

lim
𝑡→∞

∫𝑡

0
𝑏 (𝑠) 𝑒−𝜆𝑖 ∫𝑡𝑠 𝑏(𝜏)d𝜏 (∫𝑡

𝑠
𝑏 (𝜏) d𝜏)𝑚 𝑒−𝛼𝑠d𝑠 = 0,

𝑚 = 0, 1, . . . , 𝑅𝑖 − 1; 𝑖 = 2, . . . , 𝛾. (16)

Noticing that Ψ𝐹𝜆𝑖𝑖
(𝑡, 𝑠) = ∑∞

𝑑=0((− ∫𝑡𝑠 𝑏(𝜏)d𝜏)𝑑(𝐹𝜆𝑖
𝑖 )𝑑/𝑑!), one

has lim𝑡→∞𝑋2(𝑡) = 0.
Let 𝑋3(𝑡) = ∫𝑡0 𝑏(𝑠)Ψ(𝑡, 𝑠)(𝐽 ⊗ 𝐼𝑛)dΛ(𝑠), then

𝑋3 (𝑡2) − 𝑋3 (𝑡1)
= ∫𝑡2

0
𝑏 (𝑠) [Ψ (𝑡2, 𝑠) − Ψ (𝑡1, 𝑠)] (𝐽 ⊗ 𝐼𝑛) dΛ (𝑠)

+ ∫𝑡2

𝑡1
𝑏 (𝑠) Ψ (𝑡1, 𝑠) (𝐽 ⊗ 𝐼𝑛) dΛ (𝑠) ≜ 𝑋31 + 𝑋32.

(17)

Therefore 𝐸‖𝑋3(𝑡2) − 𝑋3(𝑡1)‖2 ≤ 2𝐸‖𝑋31‖2 + 2𝐸‖𝑋32‖2. It is
easy to obtain

𝐸 𝑋31
2

= ∫𝑡2

0
𝑏2 (𝑠) [Ψ (𝑡2, 𝑠) − Ψ (𝑡1, 𝑠)] (𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠. (18)

Noting

∫𝑇0

0
𝑏2 (𝑠) [Ψ (𝑡2, 𝑠) − Ψ (𝑡1, 𝑠)] (𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠

≤ 𝑛𝑁 (𝐽 ⊗ 𝐼𝑛)21 ∫∞

0
𝑏2 (𝑠) d𝑠 ≜ 𝑀4𝜀2 (19)

and

∫𝑡2

Γ0
𝑏2 (𝑠) [Ψ (𝑡2, 𝑠) − Ψ (𝑡1, 𝑠)] (𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠
≤ 4𝑛𝑁𝐿2 (𝐽 ⊗ 𝐼𝑛)21 𝜀 ≜ 𝑀5𝜀, (20)

one has 𝐸‖𝑋31‖2 ≤ 𝑀4𝜀2 + 𝑀5𝜀. Similarly, one obtains

𝐸 𝑋32
2 = ∫𝑡2

𝑡1
𝑏2 (𝑠) Ψ (𝑡1, 𝑠) (𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠

≤ 𝑛𝑁𝐿2 (𝐽 ⊗ 𝐼𝑛)21 𝜀 ≜ 𝑀54 𝜀. (21)

So 𝐸‖𝑋3(𝑡2) − 𝑋3(𝑡1)‖2 ≤ 2𝑀4𝜀2 + (5/2)𝑀5𝜀. By Cauchy
criterion and the arbitrariness of 𝜀, there exists 𝑋∗

3 such that𝑋3(𝑡) converges to 𝑋∗
3 in mean square sense. So there exists𝑋∗ such that 𝑋(𝑡) converges to 𝑋∗ in mean square sense. By

(12), 𝑋∗ = [𝐷 diag(1, 0, . . . , 0)𝐷−1 ⊗ 𝐼𝑛]𝑋(0) + 𝑋∗
3 .

3. Main Results

In this section, we give necessary and sufficient conditions for
the proposed event-triggered protocols to guarantee a mean
square bipartite consensus.

Theorem 7. The event-triggered protocol in (2) is a mean
square bipartite consensus protocol for the system in (1) if and
only if (Q1)-(Q4) hold.
Proof (sufficiency).

(S.1) Construct a Bipartition for the MAS. By (Q3), V can be
decomposed into two disjoint subsetsVV1 ,VV2 ,VV1 ∪VV2 =
V, VV1 ∩ VV2 = ⌀, and 𝑎𝑠𝑡 ≤ 0 for 𝑠 ∈ V𝑓, 𝑡 ∈ V𝑔, 𝑓 ̸=𝑔, 𝑓, 𝑔 ∈ {V1, V2}, and 𝑎𝑠𝑡 ≥ 0 for 𝑠, 𝑡 ∈ V𝑝, 𝑝 ∈ {V1, V2}.
Without loss of generality, we assume VV1 = {1, . . . , 𝑚},
VV2 = {𝑚 + 1, . . . , 𝑁}. Let 𝑔𝑖 = 1 for 𝑖 ∈ VV1 and 𝑔𝑗 = −1
for 𝑗 ∈ VV2 . By definition, one has L𝑔 = 0, where 𝑔 =(𝑔1, . . . , 𝑔𝑁)𝑇.
(S.2) Prove lim𝑡→∞𝐸‖𝑋(𝑡) − 𝑔 ⊗ ]∗‖2 = 0. From Lemma 6,∃𝑋∗, lim𝑡→∞𝐸‖𝑋(𝑡) − 𝑋∗‖2 = 0. Without loss of generality,
we assume lim𝑡→∞𝐸‖𝑥1(𝑡) − ]∗‖2 = 0. Next, we will prove
lim𝑡→∞𝐸‖𝑥𝑖(𝑡) − 𝑔𝑖]∗‖2 = 0, 𝑖 = 2, . . . , 𝑁.

Let 𝜙(𝑡) = (𝜙𝑇2 (𝑡), . . . , 𝜙𝑇𝑁(𝑡))𝑇, where 𝜙𝑖(𝑡) = 𝑥𝑖(𝑡) −𝑔𝑖𝑥1(𝑡), 𝑖 = 2, . . . , 𝑁. Now we prove that lim𝑡→∞𝐸‖𝜙(𝑡)‖2 =0. For this purpose, We assume 𝜙(𝑡) ≜ (𝑄 ⊗ 𝐼𝑛)𝑋(𝑡), where
𝑄 ≜ ( 1𝑁 1𝑁 ⋅ ⋅ ⋅ 1𝑁 − 1𝑁 ⋅ ⋅ ⋅ − 1𝑁−1𝑚−1 𝐼𝑚−1 0−1𝑁−𝑚 0 −𝐼𝑁−𝑚 )

= ( 1𝑁𝑔𝑇𝑄2

) .
(22)

Then 𝜙(𝑡) = (𝜒𝑇(𝑡), 𝜙𝑇(𝑡))𝑇, where 𝜒(𝑡) ≜ (1/𝑁)(𝑔𝑇 ⊗𝐼𝑛)𝑋(𝑡). Since
𝑄L𝑄−1 = (0 𝜛𝑇0 𝐿2

) , (23)



Journal of Control Science and Engineering 5

by (4), one has𝑑𝜙 (𝑡) = −𝑏 (𝑡) (𝐿2 ⊗ 𝐼𝑛) 𝜙 (𝑡) d𝑡− 𝑏 (𝑡) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑡) d𝑡+ 𝑏 (𝑡) (𝑄2𝐽 ⊗ 𝐼𝑛) dΛ (𝑡) . (24)

By (23), 𝑆−1𝐿2𝑆 = diag(𝐹2, . . . , 𝐹𝛾), where 𝑆 is invertible and𝐹2, . . . , 𝐹𝛾 are given in (10). The state transition matrix of the
system in (24) isΨ2 (𝑡, 𝑡0) = (𝑆 ⊗ 𝐼𝑛)⋅ [diag (Ψ𝐹𝜆22

(𝑡, 𝑡0) ⊗ 𝐼𝑛, . . . , Ψ𝐹
𝜆𝛾
𝛾

(𝑡, 𝑡0) ⊗ 𝐼𝑛)]
⋅ (𝑆−1 ⊗ 𝐼𝑛) ,

(25)

where Ψ
𝐹
𝜆𝑞
𝑞

(𝑡, 𝑡0), 𝑞 = 2, . . . , 𝛾 are defined as in Lemma 4.
Hence, lim𝑡→∞Ψ2(𝑡, 𝑡0) = 0, i.e., ∀𝜀 > 0, ∃Γ2 > Γ1, such that‖Ψ2(𝑡, 𝑡0)‖ < 𝜀, ∀𝑡 > Γ2. Furthermore, ∃𝑇𝐿2 > 0, such that,∀𝑡 > 𝑡0 ≥ 0, max(‖Ψ2(𝑡, 𝑡0)‖1, ‖Ψ2(𝑡, 𝑡0)‖∞) ≤ 𝑇𝐿2 < ∞.

By Itô formula, it can be seen that the state of the system
in (24) can be described as𝜙 (𝑡) = Ψ2 (𝑡, 0) 𝜙 (0)

− ∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠

+ ∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐽 ⊗ 𝐼𝑛) dΛ (𝑠) .

(26)

Therefore,𝐸 𝜙 (𝑡)2 = Ψ2 (𝑡, 0) 𝜙 (0)2 − 2𝜙𝑇 (0) Ψ𝑇
2 (𝑡, 0)

⋅ ∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠

+ ∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠2

+ ∫𝑡

0
𝑏2 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠,

(27)

and hence,𝐸 𝜙 (𝑡)2≤ 2 Ψ2 (𝑡, 0) 𝜙 (0)2
+ 2 ∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠2

+ ∫𝑡

0
𝑏2 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠.

(28)

Since∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠2

≤ ∫𝑡

0
𝑏2 (𝑠) Ψ2 (𝑡, 𝑠)2 d𝑠 ∫𝑡

0

(𝑄2𝐿 ⊗ 𝐼𝑛)2 ‖𝑒 (𝑠)‖2 d𝑠 (29)

and

∫𝑡

0

(𝑄2𝐿 ⊗ 𝐼𝑛)2 ‖𝑒 (𝑠)‖2 d𝑠
≤ (𝑄2𝐿 ⊗ 𝐼𝑛)2 ∫𝑡

0
𝑐21 𝑒−2𝛼𝑠d𝑠 ≤ 𝑐212𝛼 (𝑄2𝐿 ⊗ 𝐼𝑛)2 , (30)

there exists 𝛽3 > 0 such that ∫𝑡0 ‖(𝑄2𝐿 ⊗ 𝐼𝑛)‖2‖𝑒(𝑠)‖2d𝑠 ≤ 𝛽3.
Then ∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠2

⩽ 𝛽3 ∫Γ0

0
𝑏2 (𝑠) Ψ2 (𝑡, 𝑠)2 d𝑠

+ 𝛽3 ∫𝑡

Γ0
𝑏2 (𝑠) Ψ2 (𝑡, 𝑠)2 d𝑠.

(31)

Since ∫Γ00 𝑏2(𝑠)‖Ψ2(𝑡, 𝑠)‖2d𝑠 = ‖Ψ2(𝑡, 𝜂)‖2 ∫Γ00 𝑏2(𝑠)d𝑠 ≤ ‖Ψ2(𝑡,𝜂)‖2 ∫∞0 𝑏2(𝑠)d𝑠, where 𝜂 ∈ (0, Γ0) and ∫∞Γ0 𝑏2(𝑠)d𝑠 < 𝜀, one
has ∫𝑡Γ0 𝑏2(𝑠)‖Ψ2(𝑡, 𝑠)‖2d𝑠 ≤ 𝑇2

𝐿2
𝜀 ≜ 𝑀6𝜀. Therefore, ∀𝑡 > 𝑇2∫𝑡

0
𝑏 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐿 ⊗ 𝐼𝑛) 𝑒 (𝑠) d𝑠2≤ 𝛽3 Ψ2 (𝑡, 𝜂)2 ∫∞

0
𝑏2 (𝑠) d𝑠 + 𝑀6𝛽3𝜀

≤ 𝜀2𝛽3 ∫∞

0
𝑏2 (𝑠) d𝑠 + 𝑀6𝛽3𝜀.

(32)

From ∫∞Γ0 𝑏2(𝑠)𝑑𝑠 < 𝜀, one gets
∫𝑡

Γ0
𝑏2 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠
< 𝑛𝑁𝑇2

𝐿2
(𝑄2𝐽 ⊗ 𝐼𝑛) |21 𝜀 ≜ 𝑀7𝜀. (33)

Combining this with

∫Γ0

0
𝑏2 (𝑠) Ψ2 (𝑡, 𝑠) (𝑄2𝐽 ⊗ 𝐼𝑛)2𝐹 d𝑠

≤ 𝑛𝑁 Ψ2 (𝑡, 𝜉)21 (𝑄2𝐽 ⊗ 𝐼𝑛)21 ∫∞

0
𝑏2 (𝑠) d𝑠,

𝜉 ∈ (0, Γ0) ,
(34)

one has

𝐸 𝜙 (𝑡)2 ≤ 2 𝜙 (0)2 𝜀2 + 2𝛽3𝜀2 ∫∞

0
𝑏2 (𝑠) d𝑠

+ 𝑛𝑁𝜀2 (𝑄2𝐽 ⊗ 𝐼𝑛)21 ∫∞

0
𝑏2 (𝑠) d𝑠

+ 2𝑀6𝛽3𝜀 + 𝑀7𝜀.
(35)
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By the arbitrariness of 𝜀, one gets lim𝑡→∞𝐸‖𝜙(𝑡)‖2 = 0.
Hence, lim𝑡→∞𝐸‖𝑋(𝑡) − 𝑔 ⊗ ]∗‖2 = 0.
(S.3) Analyze the Statistical Characteristics of ]∗.ByLemma 6,𝑔 ⊗ ]∗ = 𝑋∗ = [𝐷 diag(1, 0, 0, . . . , 0)𝐷−1 ⊗ 𝐼𝑛]𝑋(0) + 𝑋∗

3 . So𝑔 ⊗ 𝐸]∗ = 𝐸𝑋∗ = [𝐷 diag(1, 0, 0, . . . , 0)𝐷−1 ⊗ 𝐼𝑛]𝑋(0).
We assume 𝑚𝑟, 𝑚𝑇

𝑙 represent the first column of 𝐷 and
the first row of 𝐷−1, respectively. Then, 𝑔 ⊗ 𝐸]∗ = (𝑚𝑟𝑚𝑇

𝑙 ⊗𝐼𝑛)𝑋(0). Since 𝐷−1L𝐷 = 𝐹,L𝐷 = 𝐷𝐹, and 𝐷−1L = 𝐹𝐷−1,
L𝑚𝑟 = 0 and 𝑚𝑇

𝑙 L = 0. By (S.1), L𝑔 = 0. Therefore, 𝑚𝑟 =𝜅𝑔 (𝜅 ∈ 𝑅 and 𝜅 ̸= 0) and 𝑔 ⊗ 𝐸]∗ = 𝑔 ⊗ [𝜅(𝑚𝑇
𝑙 ⊗ 𝐼𝑛)𝑋(0)].

Then 𝐸]∗ = 𝜅(𝑚𝑇
𝑙 ⊗ 𝐼𝑛)𝑋(0). Clearly, 𝑚𝑙 is concerned with

communication topology. Thus, 𝐸]∗ is determined by 𝑋(0)
and communication topology of MASs.

It is easy to obtain that Ψ(, ) is uniformly bounded.
Therefore, ∀𝜀 > 0, ∃Γ3 > Γ2,∫∞

Γ3
𝑏2 (𝑠) Ψ (𝑡, 𝑠) (𝐽 ⊗ 𝐼𝑛) (𝐽 ⊗ 𝐼𝑛)𝑇 Ψ𝑇 (𝑡, 𝑠) d𝑠 < 𝜀,

∫∞

Γ3
𝑏2 (𝑠) (𝑚𝑟𝑚𝑇

𝑙 ⊗ 𝐼𝑛) (𝐽 ⊗ 𝐼𝑛) (𝐽 ⊗ 𝐼𝑛)𝑇
⋅ (𝑚𝑟𝑚𝑇

𝑙 ⊗ 𝐼𝑛)𝑇 d𝑠 < 𝜀.
(36)

Let 𝑋4(𝑡) = ∫Γ30 𝑏2(𝑠)Ψ(𝑡, 𝑠)(𝐽 ⊗ 𝐼𝑛)(𝐽 ⊗ 𝐼𝑛)𝑇Ψ𝑇(𝑡, 𝑠)d𝑠.
Then for any 𝑡 > Γ4, ‖𝑋4(𝑡) − ∫Γ30 𝑏2(𝑠)(𝑚𝑟𝑚𝑇

𝑙 ⊗ 𝐼𝑛)(𝐽 ⊗𝐼𝑛)(𝐽 ⊗ 𝐼𝑛)𝑇(𝑚𝑟𝑚𝑇
𝑙 ⊗ 𝐼𝑛)𝑇d𝑠‖ < 𝜀. This together with (36)

leads to lim𝑡→∞ ∫𝑡0 𝑏2(𝑠)Ψ(𝑡, 𝑠)(𝐽 ⊗ 𝐼𝑛)(𝐽 ⊗ 𝐼𝑛)𝑇Ψ𝑇(𝑡, 𝑠)d𝑠 =∫∞0 𝑏2(𝑠)(𝑚𝑟𝑚𝑇
𝑙 𝐽𝐽𝑇𝑚𝑙𝑚𝑇

𝑟 ⊗ 𝐼𝑛)d𝑠 = Θ(𝑔𝑔𝑇 ⊗ 𝐼𝑛), whereΘ = 𝜅2(𝑚𝑇
𝑙 𝐽𝐽𝑇𝑚𝑙) ∫∞0 𝑏2(𝑠)d𝑠. Combining this with𝐷(𝑋∗) =

lim𝑡→∞ ∫𝑡0 𝑏2(𝑠) × Ψ(𝑡, 𝑠)(𝐽 ⊗ 𝐼𝑛)(𝐽 ⊗ 𝐼𝑛)𝑇Ψ𝑇(𝑡, 𝑠)d𝑠, one gets𝐷(]∗) = Θ𝐼𝑛. Therefore, 𝐸‖]∗‖2 < ∞. By Definition 3, the
sufficiency is established.

Necessity.

(B.1) Prove (𝑄3), Namely, ∫∞0 𝑏(𝑠)𝑑𝑠 = ∞. By contradiction,
we assume that (Q3) does not hold. Then, ∃𝜖 > 0,∫∞0 𝑏(𝑠)d𝑠 = 𝜖, and lim𝑡→∞𝑒−∫𝑡0 𝑏(𝑠)d𝑠L = 𝑒−𝜖L. There-
fore, rank(lim𝑡→∞Ψ(𝑡, 0)) = rank(𝑒−𝜖L ⊗ 𝐼𝑛) = 𝑛𝑁.
However, by Lemma 5, lim𝑡→∞Ψ(𝑡, 0) = 𝑔𝜃𝑇 ⊗ 𝐼𝑛 and
rank(lim𝑡→∞Ψ(𝑡, 0)) ≤ 𝑛. This is a contradiction. So (Q3)
holds.

(B.2) Prove That Laplacian Matrix L Has Exactly One Zero
Eigenvalue. By contradiction, we assume that 0 is not an
eigenvalue ofL. Then all the eigenvalues ofL have positive
real part and −L is a Hurwitz matrix. By (Q3) and Lemma 4,
lim𝑡→∞Ψ(𝑡, 0) = 0. Combining this with Lemma 5, one
has 𝑔 ⊗ 𝐸]∗ = 𝐸𝑍∗ − 𝐸𝑌∗. Since 𝐸𝑍∗ and 𝐸𝑌∗ are
independent of 𝑋(0), 𝐸]∗ is independent of 𝑋(0). This
contradicts Definition 3. So 0 is an eigenvalue ofL.

Let 𝐹0
1 be a Jordan block with eigenvalue 0. Then it is 1

dimensional. Otherwise, we assume𝐹0
1 is𝑅1 dimensional and𝑅1 > 1. Then, by (Q3) and the definition of matrix exponent

function, one gets that lim𝑡→∞𝑒−∫𝑡0 𝑏(𝑠)d𝑠𝐹01 does not exist,
and hence, lim𝑡→∞Ψ(𝑡, 0) does not exist. This contradicts
Lemma 5. So 𝐹0

1 is 1 dimensional.
Let algebra multiplicity of eigenvalue 0 be𝑤. Then𝑤 = 1.

Otherwise, 𝑤 > 1. Take 𝑤 = 2 as an example. Since each
Jordan block corresponding to eigenvalue 0 is 1 dimensional,

Ψ∞ ⊗ 𝐼𝑛 ≜ lim
𝑡→∞

Ψ (𝑡, 0) = lim
𝑡→∞

𝑒−∫𝑡0 𝑏(𝑠)d𝑠L ⊗ 𝐼𝑛
= 𝐷 diag (1, 1, 0, . . . , 0)𝐷−1 ⊗ 𝐼𝑛. (37)

Thus, rank(Ψ∞) = 2. This contradicts rank(Ψ∞) ≤ 1 from
Lemma 6. So LaplacianL has exactly one zero eigenvalue.

(B.3) Prove (𝑄1) and (𝑄2). By (B.2) and (Q3), one has (12). By
Lemma 5, one gets

𝐷 diag (1, 0, 0, . . . , 0)𝐷−1 = 𝑔𝜃𝑇. (38)

Noticing that 𝑚𝑟 is the first column of 𝐷, one hasL𝑚𝑟 =0. By (38), one obtains 𝑚𝑟 = 𝑔𝜅∗, where 𝜅∗ = 𝜃𝑇𝑚𝑟 ∈ 𝑅.
Then, L𝑔 = 0. By the definition of L, for any 𝑗, we obtain𝑔𝑗 ∑𝑘 ̸=𝑗 |𝑎𝑗𝑘| = ∑𝑘 ̸=𝑗 𝑔𝑘𝑎𝑗𝑘, 𝑗 = 1, . . . , 𝑁. Since 𝑔𝑗 = ±1
and 𝑔2𝑗 = 1, 𝑗 = 1, 2, . . . , 𝑁, ∑𝑘 ̸=𝑗 |𝑎𝑗𝑘| = ∑𝑘 ̸=𝑗 𝑔𝑗𝑔𝑘𝑎𝑗𝑘. So𝑔𝑗𝑔𝑘𝑎𝑗𝑘 = |𝑎𝑗𝑘| ≥ 0. Let 𝑉1 = {𝑗 | 𝑔𝑗 = 1} and 𝑉2 = {𝑗 | 𝑔𝑗 =−1}, then 𝑉1 ∩ 𝑉2 = ⌀, 𝑉1 ∪ 𝑉2 = 𝑉. If 𝑗 ∈ V𝑝, 𝑝 ∈ {1, 2},
then 𝑎𝑗𝑘 ≥ 0, 𝑘 ∈ V𝑝 or 𝑎𝑗𝑘 ≤ 0, 𝑘 ∈ V𝑟, 𝑟 ̸= 𝑝, 𝑟 ∈ {1, 2}.
By definition,G is structurally balanced, that is, (Q1) holds.

By (B.2) and (Q1), Lemma 1 implies that (Q2) holds.
(B.4) Prove (𝑄4). Assume ∫∞0 𝑏2(𝑠)d𝑠 = ∞. Due to the first
row of𝐷−1 which is𝑚𝑇

𝑙 ,𝑚𝑇
𝑙 L = 0. By (4), we obtain d((𝑚𝑇

𝑙 ⊗𝐼𝑛)𝑋(𝑡)) = 𝑏(𝑡)(𝑚𝑇
𝑙 ⊗ 𝐼𝑛)(𝐽 ⊗ 𝐼𝑛)dΛ(𝑡), 𝑖.𝑒.,

(𝑚𝑇
𝑙 ⊗ 𝐼𝑛)𝑋 (𝑡)
= (𝑚𝑇

𝑙 ⊗ 𝐼𝑛)𝑋 (0)
+ (𝑚𝑇

𝑙 ⊗ 𝐼𝑛) (𝐽 ⊗ 𝐼𝑛) ∫𝑡

0
𝑏 (𝑠) dΛ (𝑠) .

(39)

From Definition 3, it is known that 𝑋(𝑡) converges to 𝑔 ⊗ ]∗

in mean square sense, where 𝐸‖]∗‖2 < ∞. Thus, when𝑡 → ∞, (𝑚𝑇
𝑙 ⊗ 𝐼𝑛)(𝐽 ⊗ 𝐼𝑛) ∫𝑡0 𝑏(𝑠)dΛ(𝑠) converges to a

random variable 𝑋𝑚 in mean square sense with 𝐸‖𝑋𝑚‖2 <∞. Then lim𝑡→∞𝐸‖(𝑚𝑇
𝑙 ⊗ 𝐼𝑛)(𝐽 ⊗ 𝐼𝑛) ∫𝑡0 𝑏(𝑠)dΛ(𝑠)‖2 =

lim𝑡→∞ tr(𝑚𝑇
𝑙 𝐽𝐽𝑇𝑚𝑙 ⊗ 𝐼𝑛) ∫𝑡0 𝑏2(𝑠)d𝑠 = ∞. This leads to a

contradiction. So (Q4) holds.
Remark 8. From Theorem 7 it can be seen that under (Q1)-(Q4) the event-triggered protocol in (2) ensures agents
converging to ]∗ or −]∗ under measurement noise.

Remark 9. From Theorem 7 one sees that to guarantee the
mean square bipartite consensus, (Q1)-(Q2) are requirements
for time-varying gain 𝑏(𝑡) while (Q3)-(Q4) are the weakest
connectivity assumptions.
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Figure 1: Communication graphG among the 6 agents.
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Figure 2: State trajectories of six agents.

4. Numerical Simulation

To demonstrate the developed result in the preceding, we
consider an MAS of six agents, whose dynamics satisfy the
system in (1). The communication graph that connects the
six agents is illustrated in Figure 1. Clearly, V = {1, . . . , 6},
A = (𝑎𝑖𝑗), 𝑎16 = 𝑎61 = 𝑎54 = 1, 𝑎21 = 𝑎35 = −1,
and 𝑎42 = 𝑎63 = 2 in G = (V,E,A). From Figure 1,
G satisfies (Q1) and (Q2). Furthermore, all eigenvalues of
LaplacianL are 𝜆1 = 0, 𝜆2 = 0.6733+0.9192𝚥, 𝜆3 = 0.6733−0.9192𝚥, 𝜆4 = 2.0887 + 0.7157𝚥, 𝜆5 = 2.0887 − 0.7157𝚥, and𝜆6 = 3.4760 (𝚥2 = −1). Obviously, min𝜆(L) ̸=0{Re 𝜆(L)} =0.6733. The initial state of the MAS is given by 𝑋(0) =(10, −15, 20, −25, 30, −5). Choose 𝑏(𝑡) = ln(𝑡 + 1)/(𝑡 + 1).
By direct calculation we know that 𝑏(𝑡) satisfies (Q3)-(Q4).
Assume event-triggered condition (6) is satisfied by taking𝑐1 = 1.2 and 𝛼 = 0.6. Applying protocol (2) to the system
in (1), we get the six agents’ state trajectories. As shown in
Figure 2 one can see that the states of agents 1, 3, and 6
converge to 5 in mean square sense while the states of agents
2, 4, and 5 converge to -5 in mean square sense. Thus, mean
square bipartite consensus is achieved with event-triggered
protocol (2). On the other hand, from Figure 3 we know
that the inputs are constants between the event triggering
time interval. Moreover, from Figure 4, it can be seen that

u1
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u3

u4
u5
u6

0 20 40 60 80 100
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0
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Ｏ
Ｃ(
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Figure 3: Control inputs of six agents.

the absolute value of the measurement error of each agent
converges to zero. This means that the MAS does not exhibit
Zeno behavior.

5. Conclusion

Mean square bipartite consensus problem of single-
integrator MASs is investigated in the context of event-
triggered control and measurement noise. By using time-
varying gain, an event-triggered bipartite consensus
protocol is proposed under measurement noise, with
which the controller update frequency is reduced. With
given necessary and sufficient conditions on protocol
gain and communication topology, the MAS is proved
to achieve event-triggered bipartite consensus. The
simulation shows that the system will not show Zeno
behavior.
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